
  

  

Abstract— Using passive data to investigate travel behavior 

is becoming increasingly prevalent, owing to its convenient data 
acquisition process. This study seeks to evaluate the feasibility of 
leveraging Google Location History (GLH) data for analyzing 
travel behavior within the context of a developing nation like 
Bangladesh, characterized by high population density, diverse 
land use, and heterogeneous traffic patterns, including a 
significant presence of non-motorized vehicles, and relatively low 
motorized vehicle speeds. A group of 60 individuals willing to 
share their GLH data stored in the Google Maps application was 
recruited to accomplish this. A dedicated mobile phone 
application named Trip Tracker was developed to facilitate the 
collection of ground truth data. 

 Validation of the GLH data was carried out through a 
three-step procedure. Initially, the identification of home and 
work locations from GLH, based on visit frequency and duration, 
was cross-verified against user-provided inputs, demonstrating 
100% accuracy. Subsequently, the accuracy of day-to-day travel 
data, including arrival and departure times and locations, was 
assessed against GLH information, yielding a spatial and 
temporal matching accuracy of 82%. Thirdly, the modes of 
transportation extracted from ground truth data were compared 
with those provided by GLH, revealing a mode prediction 
accuracy of 53% for GLH data. This discrepancy was attributed 
to the intricate nature of Dhaka's traffic system and the 
prevalence of non-motorized transportation modes like 
rickshaws. Additionally, GLH tends to aggregate multimodal 
trips, revealing only the high-speed mode and neglecting the 
mode(s) used for the last/first-mile connection.  

Consequently, two predictive models were developed 
utilizing Random Forest (RF), a tree-based machine learning 
(ML) algorithm, and a long short-term memory neural network 
(LSTM-based NN) to refine the GLH-predicted travel mode 
information. The RF and LSTM models achieved mode 
prediction accuracies of 86% and 68%, respectively, 
representing a notable improvement over GLH predictions. 
Further enhancements in accuracy can be anticipated by 
increasing the sample size. 

 

I. INTRODUCTION 

The traditional method of travel data collection entails 
active solicitation in the form of in-person, telephone, or mail-
back interviews, such as the decennial National Household 
Travel Survey (NHTS) of the USA [1] and the National Travel 
Survey of the UK [2]. However, such data collection technique 
has met with several condemnations, including data quality 
issues such as missing trips, particularly by non-motorized 
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vehicles, and excessive respondents' burden, especially while 
collecting multiday activity-travel information. Moreover, 
relying on active solicitation for data collection could be 
prohibitively challenging for developing countries due to 
budget constraints, institutional weakness, and lack of skilled 
personnel.  

As a result, the use of passive data such as those collected 
from global positioning system (GPS) [3-6], social media 
check-in [7], smart transit fare cards [8], mobile phone call 
data [9-10], mobile phone location history [11] is garnering 
popularity, especially during the last two decades. For 
example, data obtained from smart subway fare card 
transaction information were successfully utilized by Hasan et 
al. [8] to depict urban mobility patterns. Similarly, Hasan et al. 
[7] used social media check-in data to reveal the impact of 
social influence on people's choices and lifestyles. Toader et 
al. [6] utilized GPS data to analyze the activity preferences of 
individuals. Cantelmo et al. [11] extended the study by 
employing mobile phone location history to automatically 
detect activity locations and eliminate the need for direct 
interactions with the participants.  

More recently, researchers have started to explore the 
plausibility of using Google location history (GLH) data 
provided by the Google Map smartphone application (App) to 
infer human mobility patterns [12]. Cools et al. [13] evaluated 
the feasibility of using GLH data to substitute travel diary 
information. They investigated the GLH data's effectiveness 
in detecting locations and trips across diverse urban 
environments. However, they discovered that Google Maps 
often fails to account for locations with shorter dwell times. 
Another study used GLH data to assess its potential to detect 
the joint activities of the traveler [14]. The studies above show 
the possibility of using GLH for travel behavior research. 
However, none of the studies investigated the performance of 
the GLH data for inferring important travel information such 
as trip distance, travel time, and trip mode in the context of 
developing countries, which is often characterized by high 
population density, mixed use of land, heterogeneous traffic, 
including a high share of non-motorized vehicles and low 
speed of motorized vehicles.  

Therefore, the purpose of the current study was to assess 
the pertinence of GLH data extracted from the Google Map 
smartphone application (App) for conducting travel behavior 
research in Dhaka, Bangladesh – one of the most populated 
megacities of South Asia that suffers from a lack of periodic 
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travel survey for capturing the travel trends of its expanding 
population. To this end, the study recruited a panel of 
participants willing to share the GLH data stored in their 
Google Map application. The participants also logged their 
day-to-day travel information through a mobile phone 
application (App) – Trip Tracker developed for this study. The 
data collected using Trip Tracker – often referred to as the 
ground truth data or offline data in the paper – was used to 
check the performance of the GLH data for inferring pertinent 
activity-travel information.  

The validation of the GLH data was accomplished in three 
steps. First, the home and work locations were inferred from 
GLH based on the frequency of place visits and duration of 
stay and were validated against the user input. Second, the 
day-to-day travel data, such as the arrival and departure times 
and locations, were checked against the GLH information. 
Thirdly, the ground truth travel modes were examined against 
those obtained from Google Location History (GLH). 
Preliminary analysis revealed that GLH's prediction of 
Dhaka's travel mode was unsatisfactory. It was found that 
GLH systematically misclassifies several popular local modes 
of Dhaka. For example, rickshaws, e-rickshaws, CNG, and 
tempo are often inaccurately classified as passenger vehicles 
or buses. Additionally, Google does not label the multimodal 
trips correctly. Instead, it reveals only the high-speed mode 
from the sequence of modes and neglects the modes used for 
first and last-mile connectivity.  

Consequently, the study developed a predictive model for 
travel mode classification using Random Forest (RF), a widely 
used decision tree-based machine learning algorithm (ML) for 
travel behavior modeling [15] and a long-short-term memory 
neural network (LSTM-based NN), capable of handling 
sequential data [16]. These models were constructed based on 
the traveler's location information provided by GLH. To the 
authors' knowledge, this is the first travel mode prediction 
model for Dhaka based on the semantic information collected 
from GLH.  

The rest of the paper is organized as follows: the next 
section describes the study methodology, section III provides 
the analysis of the results, and section IV concludes the paper 
with a summary of the study and the direction for future 
research.   

II. METHODOLOGY 

Google Location History (GLH) is a Google service that 
records user location data, including geocoordinates, 
timestamps, place names, and inferred transportation modes, 
when the "Location History" setting is activated in a user’s 
smartphone Google Maps application. The study involved 
data collection, data analysis, validation of GLH information, 
and development of a mode prediction model. The following 
subsections provide detailed descriptions of these phases. 

A. Development of Trip Tracker Application 

An application (App) called Trip Tracker was developed 
to collect travel information such as the arrival and departure 
times, the origin and destination of the trips, and the travel 
modes of the respondents. Participants could indicate the start 
and end of trips through push buttons in the AppApp. A 
dropdown list was provided to select the transportation mode 
during the trip. The AppApp could capture the geocoordinates 
and timestamps of the starting and ending locations of the trip. 

Upon completing the trip, the AppApp saved the trip data in a 
MongoDB [17] database, associating it with the user's ID.  

B. Participant Recruitment 

The study started with a recruitment survey to enlist 
willing participants. The eligible participants were enlisted for 
three months. The enrolled participants provided their home, 
workplace, or school location during the survey. They 
consented to use the Trip Tracker Android app to log their 
travel details during the study period. The participants were 
requested to keep their location services active throughout the 
survey to collect GLH information. Throughout the survey, 
the study team periodically contacted the participants to 
ensure consistent logging of the travel information. The 
participants who diligently participated in the study by 
carrying the Trip Tracker App during all travels and handed 
over the GLH data were compensated for their valuable time 
with either a food voucher or cash payment based on their 
preference. The collected data were stored in a MongoDB [17] 
open-source database. 

C. Preprocessing of GLH Data 

The GLH data is obtained from the users in the form of a 
JSON file, in which "activitySegment" and "placeVisit" are 
nested in the "timelineObjects."  The "place visit" segment 
contains information about the latitude and longitude, start and 
end times of a place visit, the inferred name of the visited 
place, and the confidence level of the inferred location. The 
"activitySegment" contains the start and end latitude and 
longitude of a trip, start and end times, the inferred mode of 
travel, and the latitude and longitude of some intermediate 
points between the trip start and end point. The "placeVisit" 
and "activitySegment" information are merged based on the 
place visit's start time and the trip's end time. The unique user 
ID generated during the Trip Tracker survey integrated the 
GLH information with the Trip Tracker Application data.  

D.  Feature Extraction from GLH data 

The geolocation and time stamp information provided by 
GLH were used to calculate the trip duration, travel distance, 
velocity, and acceleration of the trip segments. The 
geocoordinates provided by GLH can be represented by the 
set 𝐺 = {(𝜆0, 𝜙0), (𝜆1, 𝜙1), (𝜆2, 𝜙2), … (𝜆𝑛, 𝜙𝑛)} where 𝜆𝑖 is 
i’th location’s longitude and 𝜙𝑖 is the i'th location's latitude. 
The timestamps can be represented by  𝑇 = {𝑡0, 𝑡1, 𝑡2, … 𝑡𝑛},  
where 𝑡𝑖 is the timestamp corresponding to the i'th location. 
The distance between two consecutive geolocations ⅆ𝑖  was 
calculated using the Haversine formula [18] based on the 
corresponding latitude, longitude set, G. The trip duration tt 
was calculated using (1) from the timestamp dataset, T as 
follows 𝑡𝑡 = 𝑡𝑛 −  𝑡𝑜        (1)

                  
The velocity of the trip segments was then calculated from 

the corresponding distance and time intervals. It can be noted 
that the term trip segment is used to refer to the portion of a 
trip between any two consecutive locations.   

E.  Validation of home and work location 

The concept of "home" typically refers to where 
individuals reside at night, generally between 10 p.m. and 7 
a.m. Subsequently, individuals proceed to work or school, 
spending a substantial period before venturing into 



  

recreational and maintenance activities at home or outside. 
The study applied heuristics to identify the home and the 
second most frequent destination (most often work or school) 
from the GLH data. The paper identifies the most frequently 
visited location between 10 p.m. and 7 a.m. as home. 
Similarly, the most visited place between 7 a.m. and 5 p.m. on 
weekdays was identified as work/school. The identified home 
and work/school geolocation was checked against the user-
provided input during the recruitment survey. 

F. Validation of trip information 

The assessment of the daily travel information relied on 
computing the discrepancies between start locations and end 
locations and start times and end times of the trips. First, the 
GLH and Trip Tracker data were sorted by the user ID and the 
trip's start time. The validation process utilized the Mean 
Deviation and Root Mean Square Error (RMSE) for 
assessment. It can be noted that 100% accuracy is obtained 
only when the exact geolocation (i.e., 0 m error in space) is 
reported by the GLH and Trip Tracker at the same time (i.e., 
0 min discrepancy in time). Therefore, allowing a temporal 
and spatial threshold can improve the accuracy of the match. 
The study used a temporal threshold of 0 to 5 minutes and a 
spatial threshold of 0 m to 500 m.  

G.  Mode Split 

During the quality check of the GLH data, it was noted that 
the GLH does not accurately report modes for multimodal 
journeys – instead, it reports a single mode for the whole trip 
of such journeys. However, multimodal trips accounted for 
26% of the surveyed trips. Therefore, a trip-splitting algorithm 
was implemented based on the segment velocities calculated 
from GLH-provided location information to identify the trip 
legs corresponding to different modes. Typically, the velocity 
changes when the respondents switch their travel modes. 
Therefore, velocity clusters were identified along the trip 
segments to locate the point of modal shift. Later, the mode 
prediction algorithms (described next) were applied to predict 
the travel mode corresponding to each trip segment. This 
approach enabled the identification of multimodal journeys 
and the labeling of multiple modes of that journey.  

The pseudocode for the mode split algorithm is shown in 
Fig. 1. It can be noted that the mode split algorithm was 
applied to all the trips reported via GLH. Hence, it was 
challenging to set the appropriate velocity threshold for 
clustering. The algorithm had the potential to break the singly 
modal journeys into smaller segments as well. The mode-
splitting task involved clustering similar velocity profiles; 
however, the exact number of mode changes within a trip was 
uncertain. Two types of thresholds were employed for 
clustering to address this uncertainty. Initially, velocities were 
categorized into two groups: those exceeding 16 km/hr 
(considered high) and those below 16 km/hr (considered low). 
Subsequently, a low threshold of 3 km/hr was applied to 
velocities below 16 km/hr, while a high threshold of 16 km/hr 
was applied to velocities bel to velocities above 16 km/hr. This 
segmentation process partitioned the velocity list into distinct 
lists, each representing a transportation mode. 

H.  Mode Prediction Models 

Two mode prediction models were developed utilizing ML 
based on Random Forest (RF) and the Long Short-Term 
Memory (LSTM) approach within an artificial neural network.  

RF is a widely used decision tree-based ensemble ML 
algorithm [19], capable of effectively handling high 
dimensional data [20], missing values and outliers [19], and 
class imbalance [21]. The selection of LSTM is motivated by 
its ability to capture intricate patterns within sequential data 
[16] effectively. The LSTM architecture encompasses three 
pivotal components: the input gate, forget gate, and output 
gate, in addition to the memory cell blocks relating to long and 
short-term memory.  

Inputs for Prediction Model: 

 Our research employed the following seven features to 
construct the mode prediction model. 

Segment velocity: This feature encompasses sequential 

data, representing the velocity at various time points during a 

trip. 

Start time of the Trip: This feature denotes the trip's 

initiation time and is obtained from the GLH dataset. 

Day of the week: This feature signifies the day the trip 

commenced. 

Trip mode predicted by GLH: This feature represents the 

Google-predicted trip mode. 

Segment time duration: This feature contains the duration 

of the subsequent time stamps. 

Average velocity: This feature represents the average 

segment velocities. 

Trip distance: This feature indicates the distance obtained 

from the final and initial geolocation of the trip.  

Hyperparameters used in the RF mode prediction model:  

One hundred decision trees were developed to build the 
random forest. The selected minimum leaf size was 1, 
necessitating a minimum of 2 samples per leaf. The minimum 
samples required for a split was set at 2. Lower values of this 
parameter enable the tree to capture more intricate patterns in 
the data, which is beneficial but can also lead to overfitting, 
particularly in datasets with a high level of noise. Conversely, 
higher values promote the development of simpler tree 
structures but can lead to underfitting if the values are too high 
[22]. Therefore, the hyperparameters were selected 
methodically based on a grid search cross-validation process. 

def identify_modes(speeds, low=3, high=16):  
    modes = [] 
    current = [speeds[0]] 
    for i in range(1, len(speeds)): 
        threshold_forward = low if speeds[i] <= 16 

else high 
        threshold_backward = low if speeds[i - 1] <= 

16 else high 
        if abs(speeds[i] - speeds[i-1]) <= 

threshold_forward or abs(speeds[i] - speeds[i-1]) <= 
threshold_backward: 

            current.append(speeds[i]) 
        else: 
            modes.append(current) 
            current = [speeds[i]] 
    modes.append(current) 
    return modes 

Figure 1.   Pseudocode for mode prediction model 



  

Hyperparameters used in the LSTM mode prediction model: 

The input layer of the proposed neural network model was 
divided into four branches to process distinct data types. The 
first branch used an LSTM to handle sequential data such as 
segment velocity and segment time duration. In contrast, the 
other five branches, dealing with time, day, Google-predicted 
trip mode, trip distance, and average velocity, included a dense 
layer with dropout. The Relu activation function was applied 
at the input layer. Outputs from all branches were 
concatenated and directed to a hidden layer that employed the 
Relu activation function with dropout to prevent overfitting. 
The output layer used the softmax activation function for the 
multi-class classification.  

Performance analysis of the prediction models: 

 Confusion matrices were produced to compare the 
performance of the mode prediction models. The confusion 
matrix is created with the actual modes on the y-axis and the 
predicted modes on the x-axis. Therefore, diagonal elements of 
the matrix represent accurate predictions, and the off-diagonal 
elements represent incorrect predictions.  

 The accuracy of a mode, 𝑖, was calculated using (2) as 
follows: 

 𝐴𝑖 =  𝐶𝑃𝑖𝑁𝑖           (2) 

 
Where 𝐴𝑖 represents the accuracy for mode, 𝑖, 𝐶𝑃 represents 
the correct prediction, and 𝑁 represents the actual number of 
modes in the ground truth data. 

The overall accuracy across all modes was calculated as 
the weighted average of the mode-specific accuracy using (3) 
below: 

 𝑂𝐴 =  ∑ 𝐶𝑃𝑖𝑁𝑖𝑖∑ 𝑁𝑖𝑖          (3) 

III. RESULT AND DISCUSSION 

Three thousand six hundred twenty trips were reported in 
the GLH data by the 60 respondents. A rigorous data quality 
check (QA/QC) was conducted before the data validation and 
mode prediction.  

A. Validation of home and work location  

The validation of work and home locations was conducted 
by comparing offline data with GLH data. The heuristic 
algorithm (mentioned in the methodology section), based on 
the time of day and frequency of visits, accurately predicted 
the home and work locations for all 60 users.   

B. Validation of trip information 

The origin and destination location and the arrival and 
departure times of all GLH trips were compared against the 
data collected via the Trip Tracker application. The data 
comparison resulted in an 82% accuracy while considering a 
space threshold of 500 m and a time threshold of 5 minutes. In 
other words, for 82% of the trips, the origin and destination 
locations reported in the GLH data and by the Trip Tracker 
were within 500m of each other, and the arrival and departure 
times of these trips were within 5 minutes. The mean deviation 
and the RMSE value of the origin, destination, departure, and 
arrival times for these 2960 trips (82% of 3620) trips are 
reported in Table I. 

TABLE I. THE MEAN DEVIATION AND RMSE BETWEEN GLH DATA 
AND OFFLINE DATA 

Parameters Mean deviation  RMSE  
Origin 0.0449 km 0.105 

Destination 0.038 km 0.090 

Departure time 0.71 minute 1.29  
Arrival time 0.81 minute 1.37 

 

C. Validation of travel mode 

The 2960 trips validated for spatial and temporal accuracy 
were used further to validate travel mode. While comparing 
GLH with the offline data, it was found that GLH cannot 
capture all the trips undertaken by the respondents. Fig. 2   
shows the distribution of transport modes not identified by 
GLH. The values in parentheses represent the average length 
of the missed trips. As shown in Fig. 2, walking accounts for 
more than 50% of the transport modes missed by GLH. 
Further analysis revealed that the average length of the trips 
missed by GLH is less than 500m. The frequent omission of 
walking trips by GLH can be attributed to their low velocity 
and smaller radius of movement – a finding that aligns with 
observations of Cools et al. [13].  

 
 

 
 
 
Next, a confusion matrix was created to compare the GLH-

predicted modes against the modes reported by the 
respondents in the offline data. Fig. 3 presents the confusion 
matrix. From the confusion matrix, it is apparent that 
approximately 70% of the reported bike and bus trips are 
classified as motorcycle and bus, respectively, by GLH. 
Moreover, GLH does not use separate categories for CNG, 
Tempo, and E-Rickshaws; instead, it categorizes these 
vehicles as passenger vehicles, buses, walking, or subways. 
Nonetheless, the GLH labels the cycling and the walking trips 
satisfactorily. The overall mode prediction accuracy for GLH 
in Dhaka was only 53%. Additionally, the multimodal 
journeys are represented by a single mode in the GLH data. 

D. Mode prediction model results  

80% of the 2960 validated trips were used to train the RF 
and LSTM-based neural network models, and 20% of those 
trips were used to test the predictive accuracy of the developed 
models. It may be noted that CNG trips were excluded due to 
their insufficient number of observations. Table II compares 
the predictive accuracies of the RF and LSTM-based neural 
network models. It is evident from the table that the RF model 
attains a higher overall accuracy of 86%, while the LSTM 
model achieves an accuracy of 68%. However, both models  

51.20%

14%

13.10%

21.60%

Walking  (0.41 km)

Bus  (3.75 km)

Rickshaw (1.14 km)

Others

Figure 2.   Most frequent missing trip mode and the associated distance 



  

surpass the 53% accuracy rate obtained using GLH data. The 
relatively lower accuracy of the LSTM model, as compared to 
the RF model, could be attributed to the insufficient quantity 
of data available for training the neural network and the 
presence of class imbalances. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE II. Comparison of RF and LSTM mode prediction model 

 

Modes 

Mode Specific Accuracy for RF and LSTM model 
Accuracy 
for RF 
model 

Accuracy 
for LSTM 
model 

No. of the 
test sample 

No. of 
training 
sample 

Bike 1.00 0.85 79 316 

Bus 0.81 0.67 78 312 

Car 0.78 0.57 65 260 

Cycle 0.90 0.60 69 276 

E-Rickshaw 0.82 0.36 39 156 

MRT 0.95 0.85 39 156 

Rickshaw 0.60 0.58 80 320 

Tempo 1.00 0.51 37 148 

Walking 0.93 0.86 106 424 

Overall 
Accuracy 

0.86 0.68 592 2368 

 

Fig. 4, which displays the RF model's confusion matrix, 
indicates accurate bike and tempo predictions. However, it 
shows a reduced accuracy of 60% for rickshaws, as delineated 
in Table II. In most instances, the rickshaw is incorrectly 
predicted as a cycle. Conversely, the LSTM model exhibits its 
highest accuracy at 86% for walking, while its accuracy for 
predicting e-rickshaws is the lowest at 36%, as shown in Table 
II. According to the confusion matrix in Fig. 5, e-rickshaws 
are predominantly misclassified as rickshaws in the LSTM 
model. 

Therefore, the proposed RF model can predict the 
transportation modes for Dhaka sufficiently accurately using 
the location information provided by GLH. This is the first 
attempt to identify Dhaka's heterogeneous travel modes using 
the limited information provided by GLH to the best of the 
author's knowledge. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 

This study evaluates the potential of Google Location 
History (GLH) data for travel behavior research in Dhaka, a 
city characterized by a heterogeneous traffic stream and 
unbearable traffic congestion. The key findings of the study 
can be outlined as follows. 

The study successfully identified the respondents' home 
and work/school location using the GLH data based on the 
frequency of visits (heuristic) algorithm. The spatial (origin 
and destination) and temporal information (arrival and 
departure time) of 82% of the GLH trips matched those 
collected using the Trip Tracker application. 

However, the accuracy of the GLH inferred travel modes 
in the context of Dhaka was not found to be satisfactory. For 
example, GLH was found to mislabel motorcycles or 
motorbikes as bikes. Similarly, autorickshaws such as CNG, 
tempo, and battery-driven electric rickshaws, quite prevalent 
in Dhaka [23], are mislabeled as passenger cars, public transit, 
or walking. Additionally, GLH systematically mislabels the 
multimodal journeys, reporting only one mode and neglecting 
the others.  

The paper proposed a heuristic algorithm to split the 
multimodal trips into constituent travel modes. This additional 

Figure 3.   Confusion matrix for GLH predicted mode and actual mode 

Figure 4.   Confusion matrix from the RF model 

 

Figure 5.   Confusion matrix from the LSTM model 

 

 



  

step was necessary since GLH was found to report a single 
mode for multimodal trips. Next, the paper proposed ML-
based RF and LSTM-based neural network models trained on 
GLH-provided location information. The RF and the LSTM-
based NN model produced a mode prediction accuracy of 86% 
and 68%, respectively, significantly higher than the accuracy 
provided by GLH for Dhaka.  

The higher accuracy obtained in the current paper is a 
noteworthy achievement since this is one of the first attempts 
to classify travel modes from the limited information provided 
by GLH in the context of heterogeneous traffic to the best of 
the author's knowledge. However, the prediction accuracy 
could be further improved with an increased sample size. 
Subsequent research should examine the spatial transferability 
of the findings obtained in the current endeavor.  
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